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Simple linear regression
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• Linear regression is a simple approach to supervised learning. It
assumes that the dependence of Y on X

1

,X
2

, . . . ,X
p

is linear.

• True regression functions are never linear!

• Although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Linear regression for the advertising data

Consider the advertising data. Questions we might ask:

• Is there a relationship between advertising budget and sales?

• How strong is the relationship between advertising budget and
sales?

• Which media contribute to sales?

• How accurately can we predict future sales?

• Is the relationship linear?

• Is there synergy among the advertising media?
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Advertising data
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Simple linear regression using a single predictor X

• We assume a model

Y = �
0

+ �
1

X + ✏,

where �
0

and �
1

are two unknown constants that represent the
intercept and slope, also known as coe�cients or parameters, and ✏
is the error term.

• Given some estimates �̂
0

and �̂
1

for the model coe�cients, we
predict future sales using

ŷ = �̂
0

+ �̂
1

x ,

where ŷ indicates a prediction of Y on the basis of X = x . The hat
symbol denotes an estimated value.

L. Leemann (Essex Summer School) Day 2 Introduction to SL 7 / 53



Estimation of the parameters by least squares

• Let ŷ
i

= �̂
0

+ �̂
1

x
i

be the prediction for Y based on the ith value of
X . Then e

i

= y
i

� ŷ
i

represents the ith residual.

• We define the residual sum of squares (RSS) as

RSS = e2
1

+ e2
2

+ · · ·+ e2
n

,

or equivalently as

RSS = (y
1

� �̂
0

� �̂
1

x
1

)2+(y
2

� �̂
0

� �̂
1

x
2

)2+ · · ·+(y
n

� �̂
0

� �̂
1

x
n

)2.
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Estimation of the parameters by least squares

• The least squares approach chooses �̂
0

and �̂
1

to minimize the RSS.
The minimizing values can be shown to be

�̂
1

=

P
n

i=1

(x
i

� x̄)(y
i

� ȳ)P
n

i=1

(x
i

� x̄)2
,

�̂
0

= ȳ � �̂
1

x̄ ,

where ȳ ⌘ 1

n

P
n

i=1

y
i

and x̄ ⌘ 1

n

P
n

i=1

x
i

are the sample means.
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Example: advertising data
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The least squares fit for the regression of sales on TV. The fit is found
by minimizing the sum of squared residuals. In this case a linear fit
captures the essence of the relationship, although it is somewhat
deficient in the left of the plot.
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Assessing the Accuracy of the Coe�cient Estimates
• The standard error of an estimator reflects how it varies under
repeated sampling. We have

SE(�̂
1

)2 =
�2

P
n

i=1

(x
i

� x̄)2
,

SE(�̂
0

)2 = �2


1

n
+

x̄2P
n

i=1

(x
i

� x̄)2

�
,

where �2 = Var(✏)
• These standard errors can be used to compute confidence intervals.
A 95% confidence interval is defined as a range of values such that
with 95% probability, the range will contain the true unknown value
of the parameter. It has the form

�̂
1

± 2⇥ SE(�̂
1

).
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Confidence Intervals

That is, there is approximately a 95% chance that the interval


�̂
1

� 2⇥ SE(�̂
1

), �̂
1

+ 2⇥ SE(�̂
1

)

�

will contain the true value of �
1

(under a scenario where we got
repeated samples like the present sample).
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Hypothesis testing
• Standard errors can also be used to perform hypothesis tests on the
coe�cients. The most common hypothesis test involves testing the
null hypothesis of
H

0

: There is no relationship between X and Y versus the alternative
hypothesis.

H
A

: There is some relationship between X and Y .

• Mathematically, this corresponds to testing versus

H
0

: �
1

= 0

versus

H
A

: �
1

6= 0,

since if �
1

= 0 then the model reduces to Y = �
0

+ ✏, and X is not
associated with Y .
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Hypothesis testing

• To test the null hypothesis, we compute a t-statistic, given by

t =
�̂
1

� 0

SE(�̂
1

)
,

• This will have a t-distribution with n � 2 degrees of freedom,
assuming �

1

= 0.

• Using statistical software, it is easy to compute the probability of
observing any value equal to | t | or larger. We call this probability
the p-value.
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Assessing the Overall Accuracy of the Model

• We compute the Residual Standard Error

RSE =

r
1

n � 2
RSS =

vuut 1

n � 2

nX

i=1

(y
i

� ŷ
i

)2,

where the residual sum-of-squares is RSS =
P

n

i=1

(y
i

� ŷ
i

)2.

• R-squared or fraction of variance explained is

R2 =
TSS� RSS

TSS

= 1� RSS

TSS

where TSS =
P

n

i=1

(y
i

� ȳ)2 is the total sum of squares.
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Results for the advertising data
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Results for the advertising data
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Multiple Linear Regression

• Here our model is

Y = �
0

+ �
1

X
1

+ �
2

X
2

+ · · ·+ �
p

X
p

+ ✏,

• We interpret �
j

as the average e↵ect on Y of a one unit increase in
X
j

, holding all other predictors fixed. In the advertising example,
the model becomes

sales = �
0

+ �
1

⇥ TV + �
2

⇥ radio+ �
p

⇥ newspaper+ ✏.

L. Leemann (Essex Summer School) Day 2 Introduction to SL 18 / 53



Interpreting regression coe�cients

• The ideal scenario is when the predictors are uncorrelated – a
balanced design:

• Each coe�cient can be estimated and tested separately.
• Interpretations such as “a unit change in X

j

is associated with a �
j

change in Y , while all the other variables stay fixed”, are possible.

• Correlations amongst predictors cause problems:
• The variance of all coe�cients tends to increase, sometimes

dramatically
• Interpretations become hazardous – when X

j

changes, everything else
changes.

• Claims of causality are di�cult to justify with observational data.
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The woes of (interpreting) regression coe�cients

“Data Analysis and Regression” Mosteller and Tukey 1977

• a regression coe�cient �
j

estimates the expected change in Y per
unit change in X

j

, with all other predictors held fixed. But
predictors usually change together!

• Example: Y total amount of change in your pocket; X
1

= number
of coins; X

2

= number of pennies, nickels and dimes. By itself,
regression coe�cient of Y on X

2

will be > 0. But how about with
X
1

in model?

• Y = number of tackles by a rugby player in a season; W and H are
his weight and height. Fitted regression model is
Ŷ = �

0

+ .50W � .10H. How do we interpret �̂
2

< 0?
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Two quotes by famous Statisticians

• “Essentially, all models are wrong, but some are useful” George Box

• “The only way to find out what will happen when a complex system
is disturbed is to disturb the system, not merely to observe it
passively” Fred Mosteller and John Tukey, paraphrasing George Box
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Estimation and Prediction for Multiple Regression

• Given estimates �̂
0

, �̂
1

, . . . , �̂
p

, we can make predictions using the
formula

ŷ = �̂
0

+ �̂
1

x
1

+ �̂
2

x
2

+ · · ·+ �̂
p

x
p

.

• We estimate �
0

,�
1

, . . . ,�
p

as the values that minimize the sum of
squared residuals

RSS =
nX

i=1

(y
i

� ŷ
i

)2 =
nX

i=1

(y
i

� �̂
0

� �̂
1

x
i1

� �̂
2

x
i2

� · · ·� �̂
p

x
ip

)2.

This is done using standard statistical software. The values
�̂
0

, �̂
1

, . . . , �̂
p

that minimize RSS are the multiple least squares
regression coe�cient estimates.
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Results for the advertising data
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Some important questions

1 Is at least one of the predictors X
1

,X
2

, . . . ,X
p

useful in predicting
the response?

2 Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3 How well does the model fit the data?

4 Given a set of predictor values, what response value should we
predict, and how accurate is our prediction?
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Is at least one predictor useful?

• For the first question, we can use the F-statistic

F =
(TSS � RSS)/p

RSS/(n � p � 1)
⇠ F

p,n�p�1
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Deciding on the important variables

• The most direct approach is called all subsets or best subsets
regression: we compute the least squares fit for all possible subsets
and then choose between them based on some criterion that
balances training error with model size.

• However we often can’t examine all possible models, since there are
2p of them; for example when p = 40 there are over a billion
models!

• Instead we need an automated approach that searches through a
subset of them. We will discuss such approaches on Friday.
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Qualitative predictors
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Other Considerations in the Regression Model

Qualitative Predictors

• Some predictors are not quantitative but are qualitative, taking a
discrete set of values.

• These are also called categorical predictors or factor variables.

• See for example the scatterplot matrix of the credit card data in the
next slide.

• In addition to the 7 quantitative variables shown, there are four
qualitative variables: gender, student (student status), status
(marital status), and ethnicity (Caucasian, African American
(AA) or Asian).
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Balance
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Qualitative Predictors – continued

• Example: investigate di↵erences in credit card balance between
males and females, ignoring the other variables. We create a new
variable

x
i

=

⇢
1 if ith person is female

0 if ith person is male

• Resulting model:

y
i

= �
0

+ �
1

x
i

+ ✏
i

=

⇢
�
0

+ �
1

+ ✏
i

if ith person is female

�
0

+ ✏
i

if ith person is male

• Interpretation?
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Credit card data
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Results for gender model
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Qualitative predictors with more than two levels

• With more than two levels, we create additional dummy variables.
For example, for the ethnicity variable we create two dummy
variables. The first could be

x
i1

=

⇢
1 if ith person is Asian

0 if ith person is not Asian,

• and the second could be

x
i2

=

⇢
1 if ith person is Caucasian

0 if ith person is not Caucasian.
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Qualitative predictors with more than two levels

• Then both of these variables can be used in the regression equation,
in order to obtain the model

y
i

= �
0

+ �
1

x
i1

+ �
2

x
i2

+ ✏
i

=

⇢
�
0

+ �
1

+ ✏
i

if ith person is Asian

�
0

+ �
2

+ ✏
i

if ith person is Caucasian

�
0

+ ✏
i

if ith person is AA

• There will always be one fewer dummy variable than the number of
levels. The level with no dummy variable – African American in this
example – is known as the baseline.
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Credit card data
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Extensions of the Linear Model

Removing the additive assumption: interactions and nonlinearity
Interactions:

• In our previous analysis of the Advertising data, we assumed that
the e↵ect on sales of increasing one advertising medium is
independent of the amount spent on the other media.

• For example, the linear model

[sales = �
0

+ �
1

⇥ TV + �
2

⇥ radio + �
3

⇥ newspaper

states that the average e↵ect on sales of a one-unit increase in TV

is always �
1

, regardless of the amount spent on radio.
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Interactions – continued

• But suppose that spending money on radio advertising actually
increases the e↵ectiveness of TV advertising, so that the slope term
for TV should increase as radio increases.

• In this situation, given a fixed budget of $100,000, spending half on
radio and half on TV may increase sales more than allocating the
entire amount to either TV or to radio.

• In marketing, this is known as a synergy e↵ect, and in statistics it is
referred to as an interaction e↵ect.
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Modelling interactions – Advertising data

Model takes the form

sales = �
0

+ �
1

⇥ TV + �
2

⇥ radio + �
3

⇥ (radio ⇥ TV ) + ✏

= �
0

+ (�
1

+ �
3

⇥ radio)⇥ TV + �
2

⇥ radio + ✏

L. Leemann (Essex Summer School) Day 2 Introduction to SL 39 / 53



Modelling interactions – Advertising data
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Interpretation

• The results in this estimation suggests that interactions are
important.

• The p-value for the interaction term TV ⇥ radio is extremely low,
indicating that there is strong evidence for H

A

: �
3

6= 0.

• The R2 for the interaction model is 96.8%, compared to only 89.7%
for the model that predicts sales using TV and radio without an
interaction term.
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Interpretation – continued

• This means that (96.8 - 89.7)/(100 - 89.7) = 69% of the variability
in sales that remains after fitting the additive model has been
explained by the interaction term.

• The coe�cient estimates in the table suggest that an increase in
TV advertising of $1,000 is associated with increased sales of

(�̂
1

+ �̂
3

⇥ radio)⇥ 1000 = 19 + 1.1⇥ radio units.

• An increase in radio advertising of $1,000 will be associated with an
increase in sales of

(�̂
2

+ �̂
3

⇥ TV )⇥ 1000 = 29 + 1.1⇥ TV units.
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Hierarchy

• Sometimes it is the case that an interaction term has a very small
p-value, but the associated main e↵ects (in this case, TV and
radio) do not.

• The hierarchy principle: If we include an interaction in a model, we
should also include the main e↵ects, even if the p-values associated
with their coe�cients are not significant.
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Hierarchy

• The rationale for this principle is that interactions are hard to
interpret in a model without main e↵ects – their meaning is
changed.

• Specifically, the interaction terms also contain main e↵ects, if the
model has no main e↵ect terms.
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Interactions between qualitative and quantitative variables

• Consider the Credit dataset, and suppose that we wish to predict
balance using income (quantitative) and student (qualitative).

• Without an interaction term, the model takes the form

balance

i

⇡ �
0

+ �
1

⇥ income

i

+

⇢
�
2

if ith person is a student

0 if ith person is not a student

= �
1

⇥ income

i

+

⇢
�
0

+ �
2

if ith person is a student

�
0

if ith person is not a student
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• With interactions, it takes the form

balance

i

⇡ �
0

+ �
1

⇥ income

i

+

⇢
�
2

+ �
3

⇥ income

i

if ith person is a student

0 if ith person is not a student

=

⇢
(�

0

+ �
2

) + (�
1

+ �
3

)⇥ income

i

if ith person is a student

�
0

+ �
1

⇥ income

i

if ith person is not a student
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Credit data
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• For the Credit data, the least squares lines are shown for prediction of
balance from income for students and non-students.

• Left: no interaction between income and student.

• Right: with an interaction term between income and student.
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Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that expand the
scope of linear models and how they are fit:

• Classification problems: logistic regression, LDA

• Non-linearity: kernel smoothing, splines and generalized additive
models; nearest neighbor methods.

• Interactions: Tree-based methods, bagging, random forests and
boosting (these also capture non-linearities)

• Regularized fitting: Ridge regression and lasso
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Comparison of KNN and Regression
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KNN vs Regression

• KNN:

P(Y = j |X = x
0

) =
1

K

X

i2N
0

I
�
y
i

2 j
�

• Parametric (regression) vs non-parametric (KNN)

• The larger we pick K , the closer KNN gets to be like the regression
model.

• What kinds of f () will favor KNN, what will favor linear regression?
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KNN vs Regression (2)

(James et al. 2013: 105)
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KNN vs Regression (3)

Left: K = 1 and right: K = 9 (James et al. 2013: 107)
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KNN vs Regression (4)

(James et al. 2013: 108)
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