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2 Regularization Approaches
Ridge Regression
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Repetition: Fundamental Problem

Red: Test error.
Blue: Training error. (Hastie et al, 2008: 220)
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Tuesday: Linear Models
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Wednesday: Classification

(James et al, 2013: 140)
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Thursday: Resampling

(James et al, 2013: 181)
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Friday: Model Selection I

Subset Selection:
1 Generate an empty model and call it M0

2 For k = 1....p :
i) Generate all

!p
k
"

possible models with k explanatory variables
ii) determine the model with the best criteria value (e.g. R

2) and
call it Mk

3 Determine best model within the set of these models: M0, ...., Mp
- rely on a criteria like AIC, BIC, R

2, Cp or use CV and estimate
test error
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Regularization Approaches
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Shrinkage Methods

Ridge regression and Lasso
• The subset selection methods use least squares to fit a linear model

that contains a subset of the predictors.
• As an alternative, we can fit a model containing all p predictors

using a technique that constrains or regularizes the coe�cient
estimates, or equivalently, that shrinks the coe�cient estimates
towards zero.

• It may not be immediately obvious why such a constraint should
improve the fit, but it turns out that shrinking the coe�cient
estimates can significantly reduce their variance.

L. Leemann (Essex Summer School) Day 6 Introduction to SL 9 / 26



Regularization

• Recall that the least squares fitting procedure estimates
—0, —1, . . . , —p using the values that minimize

nÿ

i=1

1
yi ≠ —0 ≠

Jÿ

j=1
—jxij

22
= RSS

• In contrast, the regularization approach minimizes:

nÿ

i=1

1
yi ≠ —0 ≠

Jÿ

j=1
—jxij

22
+ ⁄f (—j) = RSS + ⁄f (—j)

where ⁄ Ø 0 is a tuning parameter, to be determined separately.
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Ridge Regression

• Ridge Regression minimizes this expression:

nÿ

i=1

1
yi ≠ —0 ≠

Jÿ

j=1
—jxij

22

¸ ˚˙ ˝
standard OLS estimate

+ ⁄
Jÿ

j=1
—2

j

¸ ˚˙ ˝
penalty

• ⁄ is a tuning parameter, i.e. di�erent values of ⁄ lead to di�erent
models and predictions.

• When ⁄ is very big the estimates get pushed to 0.
• When ⁄ is 0 the ridge regression and OLS are identical.

• We can find an optimal value for ⁄ by relying on cross-validation.
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Example: Credit data
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Ridge Regression: Details

• Shrinkage is not applied to the model constant —0, model estimate
for conditional mean should be un-shrunk.

• Ridge regression is an example of ¸2 regularization:
• ¸1 : f (—j) =

qJ
j=1 |—j |

• ¸2 : f (—j) =
qJ

j=1 —2
j

x̃ij = xijÒ
1
n

qn
i=1(xij ≠ x̄j)2
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Ridge regression: scaling of predictors
• The standard least squares coe�cient estimates are scale

equivariant: multiplying Xj by a constant c simply leads to a scaling
of the least squares coe�cient estimates by a factor of 1/c. In
other words, regardless of how the jth predictor is scaled, Xj —̂j will
remain the same.

• In contrast, the ridge regression coe�cient estimates can change
substantially when multiplying a given predictor by a constant, due
to the sum of squared coe�cients term in the penalty part of the
ridge regression objective function.

• Therefore, it is best to apply ridge regression after standardizing the
predictors, using the formula

x̃ij = xijÒ
1
n

qn
i=1(xij ≠ x̄j)2
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Why Does Ridge Regression Improve Over Least Squares?
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(James et al, 2013: 218)

• Simulated data with n = 50 observations, p = 45 predictors, all having
nonzero coe�cients.

• Squared bias (black), variance (green), and test mean squared error
(purple).

• The purple crosses indicate the ridge regression models for which the MSE
is smallest.

• OLS with p variables is low bias but high variance - shrinkage lowers
variance at the price of bias.
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The Lasso
• Ridge regression does have one obvious disadvantage: unlike subset

selection, which will generally select models that involve just a
subset of the variables, ridge regression will include all p predictors
in the final model.

• The Lasso is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The lasso coe�cients, —̂L

⁄, minimize
this quantity

nÿ

i=1

Q

a
yi ≠ —0 ≠

pÿ

j=1
—jxij

R

b
2

+ ⁄
pÿ

j=1
|—j | = RSS + ⁄

pÿ

j=1
|—j |

• In statistical parlance, the lasso uses an ¸1 (pronounced “ell 1”)
penalty instead of an ¸2 penalty. The ¸1 norm of a coe�cient vector
— is given by Î—Î1 = q

|—j |.
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The Lasso: continued

• As with ridge regression, the lasso shrinks the coe�cient estimates
towards zero.

• However, in the case of the lasso, the ¸1 penalty has the e�ect of
forcing some of the coe�cient estimates to be exactly equal to zero
when the tuning parameter ⁄ is su�ciently large.

• Hence, much like best subset selection, the lasso performs variable
selection.

• We say that the lasso yields sparse models – that is, models that
involve only a subset of the variables.

• As in ridge regression, selecting a good value of ⁄ for the lasso is
critical; cross-validation is again the method of choice.
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Example: Credit data
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(James et al, 2013: 220)
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Example: Baseball Data
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Lasso Example 4

> lasso.pred <- predict(lasso.mod, s = log(cv.out$lambda.1se), newx = x[test, ])

> plot(lasso.pred, y[test], ylim=c(0,2500), xlim=c(0,2500), ylab="True Value in Test Data",

xlab="Predicted Value in Test Data")

> abline(coef = c(0,1),lty=2)
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Comparing the Lasso and Ridge Regression
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• Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on simulated data set.

• Right: Comparison of squared bias, variance and test MSE between lasso
(solid) and ridge (dashed).

• Both are plotted against their R

2 on the training data, as a common form
of indexing.

• The crosses in both plots indicate the lasso model for which the MSE is
smallest.
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Comparing the Lasso and Ridge Regression: continued
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• Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that previous slide,
except that now only two predictors are related to the response.

• Right: Comparison of squared bias, variance and test MSE between lasso
(solid) and ridge (dashed).

• Both are plotted against their R

2 on the training data, as a common form
of indexing.
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Why does Lasso shrink to exactly 0?

James et al. (2013: 222)
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Ridge vs Lasso

• Ridge is preferred when some features are (strongly) correlated –
Lasso may only pick one.

• Elastic net: Combining Lasso and Ridge:

—̃ = argmin
1
RSS ≠ ⁄

Jÿ

j=1
(–—2

j + (1 ≠ –)|—j |
2

we now have two tuning parameters: – and ⁄

• Details: Hastie et al. 2008. The Elements of Statistical Learning.
Springer.
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Take away message

• The two examples illustrate that neither ridge regression nor the
lasso will universally dominate the other.

• In general, one might expect the lasso to perform better when the
response is a function of only a relatively small number of predictors.

• However, the number of predictors that is related to the response is
never known a priori for real data sets.

• A technique such as cross-validation can be used in order to
determine which approach is better on a particular data set.

• Ridge can be expected to work better than Lasso if some features
are highly correlated.
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Selecting the Tuning Parameter for Ridge Regression and
Lasso

• For ridge regression and lasso we require a method to determine
which of the models under consideration is best.

• That is, we require a method selecting a value for the tuning
parameter ⁄.

• Cross-validation provides a simple way to tackle this problem. We
choose a grid of ⁄ values, and compute the cross-validation error
rate for each value of ⁄.

• We then select the tuning parameter value for which the
cross-validation error is smallest.

• Finally, the model is re-fit using all of the available observations and
the selected value of the tuning parameter.
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