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Unsupervised Learning
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Unsupervised Learning

Unsupervised vs Supervised Learning:

•
Most of this course focuses on supervised learning methods such as

regression and classification.

•
In that setting we observe both a set of features X

1

,X
2

, . . . ,Xp for

each object, as well as a response or outcome variable Y . The goal

is then to predict Y using X

1

,X
2

, . . . ,Xp.

•
Here we instead focus on unsupervised learning, where we observe

only the features X

1

,X
2

, . . . ,Xp. We are not interested in

prediction, because we do not have an associated response variable

Y .
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The Goals of Unsupervised Learning

•
The goal is to discover interesting things about the measurements:

is there an informative way to visualize the data? Can we discover

subgroups among the variables or among the observations?

•
We discuss two methods:

•
principal components analysis, a tool used for data visualization or

data pre-processing before supervised techniques are applied, and

•
clustering, a broad class of methods for discovering unknown

subgroups in data.
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The Challenge of Unsupervised Learning

•
Unsupervised learning is more subjective than supervised learning,

as there is no simple goal for the analysis, such as prediction of a

response.

•
But techniques for unsupervised learning are of growing importance

in a number of fields:

•
subgroups of breast cancer patients grouped by their gene expression

measurements,

•
groups of shoppers characterized by their browsing and purchase

histories,

•
movies grouped by the ratings assigned by movie viewers.

L. Leemann (Essex Summer School) Day 9 Introduction to SL 6 / 48



Principal Components Analysis
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Principal Components Analysis

•
PCA produces a low-dimensional representation of a dataset. It

finds a sequence of linear combinations of the variables that have

maximal variance, and are mutually uncorrelated.

•
Apart from producing derived variables for use in supervised

learning problems, PCA also serves as a tool for data visualization.
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Principal Components Analysis: details

•
The first principal component of a set of features X

1

,X
2

, . . . ,Xp is

the normalized linear combination of the features

Z

1

= �
11

X

1

+ �
21

X

2

+ · · ·+ �p1Xp

that has the largest variance. By normalized, we mean thatPp
j=1

�2

j1 = 1.

•
We refer to the elements �

11

, . . . ,�p1 as the loadings of the first

principal component; together, the loadings make up the principal

component loading vector,

�
1

= (�
11

�
21

. . .�p1)
T
.

•
We constrain the loadings so that their sum of squares is equal to

one, since otherwise setting these elements to be arbitrarily large in

absolute value could result in an arbitrarily large variance.
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PCA: example
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(James et al, 2013: 230)

•
The population size (pop) and ad spending (ad) for 100 di↵erent

cities are shown as purple circles.

•
The green solid line indicates the first principal component, and the

blue dashed line indicates the second principal component.
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Computation of Principal Components

•
Suppose we have a n⇥ p data set X. Since we are only interested in

variance, we assume that each of the variables in X has been

centered to have mean zero (that is, the column means of X are

zero).

•
We then look for the linear combination of the sample feature

values of the form

zi1 = �
11

xi1 + �
21

xi2 + · · ·+ �p1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to the

constraint that

Pp
j=1

�2

j1 = 1.

•
Since each of the xij has mean zero, then so does zi1 (for any values

of �j1). Hence the sample variance of the zi1 can be written as

1

n

Pn
i=1

z

2

i1.
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Further principal components

•
The second principal component is the linear combination of

X

1

, . . . ,Xp that has maximal variance among all linear combinations

that are uncorrelated with Z

1

.

•
The second principal component scores z

12

, z
22

, . . . , zn2 take the

form

zi2 = �
12

xi1 + �
22

xi2 + · · ·+ �p2xip,

where �
2

is the second principal component loading vector, with

elements �
12

,�
22

, . . . ,�p2.
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Illustration

•
USAarrests data: For each of the fifty states in the United States,

the data set contains the number of arrests per 100,000 residents

for each of three crimes: Assault, Murder, and Rape. We also

record UrbanPop (the percent of the population in each state living

in urban areas).

•
The principal component score vectors have length n = 50, and the

principal component loading vectors have length p = 4.

•
PCA was performed after standardizing each variable to have mean

zero and standard deviation one.
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USAarrests data: PCA plot
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Figure details

The first two principal components for the USArrests data.

•
The blue state names represent the scores for the first two principal

components.

•
The orange arrows indicate the first two principal component

loading vectors (with axes on the top and right). For example, the

loading for Rape on the first component is 0.54, and its loading on

the second principal component 0.17 [the word Rape is centered at

the point (0.54, 0.17)].

•
This figure is known as a biplot, because it displays both the

principal component scores and the principal component loadings.
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PC1 PC2

Murder 0.5358995 -0.4181809

Assault 0.5831836 -0.1879856

UrbanPop 0.2781909 0.8728062

Rape 0.5434321 0.1673186
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Another Interpretation of Principal Components
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PCA find the hyperplane closest to the observations

•
The first principal component loading vector has a very special

property: it defines the line in p-dimensional space that is closest to

the n observations (using average squared Euclidean distance as a

measure of closeness).

•
The notion of principal components as the dimensions that are

closest to the n observations extends beyond just the first principal

component.

•
For instance, the first two principal components of a data set span

the plane that is closest to the n observations, in terms of average

squared Euclidean distance.
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Scaling of the variables matters
•
If the variables are in di↵erent units, scaling each to have standard

deviation equal to one is recommended.

•
If they are in the same units, you might or might not scale the

variables.
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L. Leemann (Essex Summer School) Day 9 Introduction to SL 19 / 48



Proportion Variance Explained

•
To understand the strength of each component, we are interested in

knowing the proportion of variance explained (PVE) by each one.

•
The total variance present in a data set (assuming that the

variables have been centered to have mean zero) is defined as

pX

j=1

Var(Xj) =

pX

j=1

1

n

nX

i=1

x

2

ij ,

and the variance explained by the mth principal component is

Var(Zm) =
1

n

nX

i=1

z

2

im.

•
It can be shown that

Pp
j=1

Var(Xj) =
PM

m=1

Var(Zm), with

M = min(n � 1, p).
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Proportion Variance Explained: continued

•
Therefore, the PVE of the mth principal component is given by the

positive quantity between 0 and 1

Pn
i=1

z

2

imPp
j=1

Pn
i=1

x

2

ij

.

•
The PVEs sum to one. We sometimes display the cumulative PVEs.
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(James et al, 2013: 383)
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How many principal components should we use?

If we use principal components as a summary of our data, how many

components are su�cient?

•
No simple answer to this question, as cross-validation is not

available for this purpose.

•
the “scree plot” on the previous slide can be used as a guide: we

look for an “elbow.”
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Clustering
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Clustering

•
Clustering refers to a very broad set of techniques for finding

subgroups, or clusters, in a data set.

•
We seek a partition of the data into distinct groups so that the

observations within each group are quite similar to each other.

•
To make this concrete, we must define what it means for two or

more observations to be similar or di↵erent.

•
Indeed, this is often a domain-specific consideration that must be

made based on knowledge of the data being studied.
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PCA vs Clustering

•
PCA looks for a low-dimensional representation of the observations

that explains a good fraction of the variance.

•
Clustering looks for homogeneous subgroups among the

observations.

L. Leemann (Essex Summer School) Day 9 Introduction to SL 25 / 48



Clustering for Market Segmentation

•
Suppose we have access to a large number of measurements (e.g.

median household income, occupation, distance from nearest urban

area, and so forth) for a large number of people.

•
Our goal is to perform market segmentation by identifying

subgroups of people who might be more receptive to a particular

form of advertising, or more likely to purchase a particular product.

•
The task of performing market segmentation amounts to clustering

the people in the data set.
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Two clustering methods

•
In K-means clustering, we seek to partition the observations into a

pre-specified number of clusters.

•
In hierarchical clustering, we do not know in advance how many

clusters we want; in fact, we end up with a tree-like visual

representation of the observations, called a dendrogram, that allows

us to view at once the clusterings obtained for each possible

number of clusters, from 1 to n.

L. Leemann (Essex Summer School) Day 9 Introduction to SL 27 / 48



K-means clustering
K=2 K=3 K=4

(James et al, 2013: 385)

•
A simulated data set with 150 observations in 2-dimensional space.

•
Panels show the results of applying K -means clustering with di↵erent

values of K , the number of clusters.

•
The color of each observation indicates the cluster to which it was

assigned using the K -means clustering algorithm.

•
Note that there is no ordering of the clusters, so the cluster coloring is

arbitrary. These cluster labels were not used in clustering; instead, they

are the outputs of the clustering procedure.
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Details of K -means clustering

•
Let C

1

, . . . ,CK denote sets containing the indices of the

observations in each cluster. These sets satisfy two properties:

1 C

1

[ C

2

[ · · · [ CK = {1, . . . , n}. In other words, each observation

belongs to at least one of the K clusters.

2 Ck \ Ck0
= ; for all k 6= k

0
. In other words, the clusters are

non-overlapping: no observation belongs to more than one cluster.

•
For instance, if the ith observation is in the kth cluster, then i 2 Ck .
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Details of K -means clustering: continued

•
The idea behind K -means clustering is that a good clustering is one

for which the within-cluster variation is as small as possible.

•
The within-cluster variation for cluster Ck is a measure WCV(Ck) of

the amount by which the observations within a cluster di↵er from

each other.

•
Hence we want to solve the problem

minimize

C
1

,...,CK

(
KX

k=1

WCV(Ck)

)
. (2)

•
In words, this formula says that we want to partition the

observations into K clusters such that the total within-cluster

variation, summed over all K clusters, is as small as possible.
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How to define within-cluster variation?

•
Typically we use Euclidean distance

WCV(Ck) =
1

|Ck |
X

i ,i 02Ck

pX

j=1

(xij � xi 0j)
2, (3)

where |Ck | denotes the number of observations in the kth cluster.

•
Combining (2) and (3) gives the optimization problem that defines

K -means clustering,

minimize

C
1

,...,CK

8
<

:

KX

k=1

1

|Ck |
X

i ,i 02Ck

pX

j=1

(xij � xi 0j)
2

9
=

; . (4)
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K -Means Clustering Algorithm

1 Randomly assign a number, from 1 to K , to each of the

observations. These serve as initial cluster assignments for the

observations.

2 Iterate until the cluster assignments stop changing:

2.1 For each of the K clusters, compute the cluster centroid. The kth

cluster centroid is the vector of the p feature means for the

observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is closest

(where closest is defined using Euclidean distance).
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K-means clustering
Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

(James et al, 2013: 389)
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Details of Previous Figure
The progress of the K -means algorithm with K = 3.

•
Top left: The observations are shown.

•
Top center: In Step 1 of the algorithm, each observation is

randomly assigned to a cluster.

•
Top right: In Step 2(a), the cluster centroids are computed. These

are shown as large colored disks. Initially the centroids are almost

completely overlapping because the initial cluster assignments were

chosen at random.

•
Bottom left: In Step 2(b), each observation is assigned to the

nearest centroid.

•
Bottom center: Step 2(a) is once again performed, leading to new

cluster centroids.

•
Bottom right: The results obtained after 10 iterations.
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Example: di↵erent starting values
320.9 235.8 235.8

235.8 235.8 310.9

(James et al, 2013: 389)
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Details of Previous Figure

•
K -means clustering performed six times on the data from previous

figure with K = 3, each time with a di↵erent random assignment of

the observations in Step 1 of the K -means algorithm.

•
Above each plot is the value of the objective (4).

•
Three di↵erent local optima were obtained, one of which resulted in

a smaller value of the objective and provides better separation

between the clusters.

•
Those labeled in red all achieved the same best solution, with an

objective value of 235.8
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Hierarchical Clustering

•
K -means clustering requires us to pre-specify the number of clusters

K . This can be a disadvantage (later we discuss strategies for

choosing K )

•
Hierarchical clustering is an alternative approach which does not

require that we commit to a particular choice of K .

•
Here, we describe bottom-up or agglomerative clustering. This is

the most common type of hierarchical clustering, and refers to the

fact that a dendrogram is built starting from the leaves and

combining clusters up to the trunk.
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Hierarchical Clustering Algorithm

•
Start with each point in its own cluster.

•
Identify the closest two clusters and merge them.

•
Repeat.

•
Ends when all points are in a single cluster.
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An Example
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(James et al, 2013: 391)

•
45 observations generated in 2-dimensional space.

•
In reality there are three distinct classes, shown in separate colors.

•
However, we will treat these class labels as unknown and will seek to

cluster the observations in order to discover the classes from the data.
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Application of hierarchical clustering
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(James et al, 2013: 392)

L. Leemann (Essex Summer School) Day 9 Introduction to SL 40 / 48



Details of previous figure

•
Left: Dendrogram obtained from hierarchically clustering the data

from previous slide, with complete linkage and Euclidean distance.

•
Center: The dendrogram from the left-hand panel, cut at a height

of 9 (indicated by the dashed line). This cut results in two distinct

clusters, shown in di↵erent colors.

•
Right: The dendrogram from the left-hand panel, now cut at a

height of 5. This cut results in three distinct clusters, shown in

di↵erent colors. Note that the colors were not used in clustering,

but are simply used for display purposes in this figure
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Another Example
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(James et al, 2013: 393)

•
An illustration of how to properly interpret a dendrogram with nine

observations in two-dimensional space. The raw data on the right was

used to generate the dendrogram on the left.

•
Observations 5 and 7 are quite similar to each other, as are observations 1

and 6.

•
However, observation 9 is no more similar to observation 2 than it is to

observations 8, 5, and 7, even though observations 9 and 2 are close

together in terms of horizontal distance.

•
This is because observations 2, 8, 5, and 7 all fuse with observation 9 at

the same height, approximately 1.8.
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Merges in previous example
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(James et al, 2013: 396)
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Types of Linkage
Linkage Description

Complete Maximal inter-cluster dissimilarity. Compute all pair-

wise dissimilarities between the observations in cluster

A and the observations in cluster B, and record the

largest of these dissimilarities.

Single Minimal inter-cluster dissimilarity. Compute all pairwise

dissimilarities between the observations in cluster A and

the observations in cluster B, and record the smallest

of these dissimilarities.

Average Mean inter-cluster dissimilarity. Compute all pairwise

dissimilarities between the observations in cluster A and

the observations in cluster B, and record the average of

these dissimilarities.

Centroid Dissimilarity between the centroid for cluster A (a mean

vector of length p) and the centroid for cluster B. Cen-

troid linkage can result in undesirable inversions.
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Choice of Dissimilarity Measure
•
So far have used Euclidean distance.

•
An alternative is correlation-based distance which considers two

observations to be similar if their features are highly correlated.

•
This is an unusual use of correlation, which is normally computed

between variables; here it is computed between the observation

profiles for each pair of observations.
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(James et al, 2013: 398)
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Scaling of the variables matters
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Practical issues

•
Should the observations or features first be standardized in some

way? For instance, maybe the variables should be centered to have

mean zero and scaled to have standard deviation one.

•
In the case of hierarchical clustering,

•
What dissimilarity measure should be used?

•
What type of linkage should be used?

•
How many clusters to choose? (in both K -means or hierarchical

clustering). Di�cult problem. No agreed-upon method. See

Elements of Statistical Learning, chapter 13 for more details.
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Conclusions

•
Unsupervised learning is important for understanding the variation

and grouping structure of a set of unlabeled data, and can be a

useful pre-processor for supervised learning.

•
It is intrinsically more di�cult than supervised learning because

there is no gold standard (like an outcome variable) and no single

objective (like test set accuracy).

•
It is an active field of research, with many recently developed tools

such as self-organizing maps, independent components analysis and

spectral clustering.

•
See The Elements of Statistical Learning, chapter 14.
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